dr. Sijun Du

Assistant Professor
Electronic Instrumentation (EI), Department of Microelectronics

Expertise: Power management integrated circuit (PMIC), energy harvesting, wireless power transfer, DC/DC converters.

Themes: Power Management

Biography

Sijun Du received a B.Sc. degree (Hons.) in Electronic Engineering from Pierre and Marie Curie University (UPMC), Paris, France, in 2011, and an M.Sc. degree (Distinction) in Electrical & Electronic Engineering from Imperial College London, UK, in 2012. From 2012 to 2013, he was with the Lip6 laboratory at Pierre and Marie Curie University (UPMC). From 2013 to 2014, he was a digital IC design engineer in Shanghai, China. In October 2014, he joined the University of Cambridge, UK, for Ph.D. research, where he spent less than three years submitting his thesis. In 2016, he did a three-month internship in the R&D department at Qualcomm Inc., San Diego, CA, USA. In 2018, he was a visiting scholar at Fudan University, China, for three months. From 2018 to 2020, he was a postdoctoral researcher at the Berkeley Wireless Research Center (BWRC), University of California, Berkeley, CA, USA. In 2020, he joined the Department of Microelectronics, Delft University of Technology, where he is now an Assistant Professor.

He is a Senior Member of IEEE and a Chartered Engineer (CEng). He received the prestigious NWO VENI grant in the 2021 round (AES domain, 1st place in ranking). He is a co-recipient of the 2022 ICECS Best Student Paper award. He is a technical committee (TC) member of the IEEE Power Electronics Society (PELS) and IEEE Circuits and Systems Society (CASS). He serves as the review committee member and session chair in ISCAS 2020, ISCAS 2021, and ISCAS 2022. He serves as the Power & Energy track co-chair for ISCAS 2025. He is a member of the 2023 ISSCC Student Research Preview (SRP) committee.

He has authored and co-authored more than 100 peer-reviewed technical papers and 5 patents. His current research is focused on energy-efficient integrated circuits and systems, including energy harvesting, wireless power transfer, and DC/DC converters used in autonomous wireless sensors for the Internet of Things (IoT), wearable electronics, biomedical devices, and microrobots.

EE2C1 Transistor Circuits

Analysis and design of digital integrated circuits (electronics and systems aspects)

EE4610 Digital IC design

Analysis and design of digital systems with full comprehension of its performance, power dissipation, size and reliability.

EE4C10 Analog circuit design fundamentals

  1. A Coupling-Adaptive Wireless Power Transfer System With Voltage-/Current-Mode Receiver and Global Digital-PWM Regulation
    Lu, Tianqi; Du, Sijun;
    IEEE Journal of Solid-State Circuits,
    pp. 1-13, 2024. DOI: 10.1109/JSSC.2024.3461857

  2. A Single-Stage Dual-Output Regulating Voltage Doubler for Wireless Power Transfer
    Lu, Tianqi; Makinwa, Kofi A. A.; Du, Sijun;
    IEEE Journal of Solid-State Circuits,
    Volume 59, Issue 9, pp. 2922-2933, 2024. DOI: 10.1109/JSSC.2024.3378675

  3. A Switching-Mode Single-Stage Dual-Output Regulating Rectifier Achieving 92.33% Efficiency and Extended Range for Wireless Power Transfer
    Lu, Tianqi; Du, Sijun;
    In 2024 IEEE European Solid-State Electronics Research Conference (ESSERC),
    pp. 169-172, 2024. DOI: 10.1109/ESSERC62670.2024.10719538

  4. A Fully Integrated Recursive Switched-Capacitor DC-DC Converter with Hybrid Hysteresis-CFM Control
    Li, Shuangmu; Lu, Tianqi; Jiang, Junmin; Du, Sijun;
    In 2024 IEEE European Solid-State Electronics Research Conference (ESSERC),
    pp. 57-60, 2024. DOI: 10.1109/ESSERC62670.2024.10719469

  5. A 3-Phase Resonant Current-Mode Wireless Power Receiver with Residual-Free Energy Delivery and Digital-Assisted ZVS Achieving 94.5% Efficiency
    Lu, Tianqi; Du, Sijun;
    In 2024 IEEE Custom Integrated Circuits Conference (CICC),
    pp. 1-2, 2024. DOI: 10.1109/CICC60959.2024.10529042

  6. 27.4 A 13.56MHz Wireless Power Transfer System with Hybrid Voltage-/Current-Mode Receiver and Global Digital-PWM Regulation Achieving 150% Transfer Range Extension and 72.3% End-to-End Efficiency
    Lu, Tianqi; Du, Sijun;
    In 2024 IEEE International Solid-State Circuits Conference (ISSCC),
    pp. 450-452, 2024. DOI: 10.1109/ISSCC49657.2024.10454547

  7. Performance Optimization of SSHC Rectifiers for Piezoelectric Energy Harvesting
    Yue, X.; Du, S.;
    IEEE Transactions on Circuits and Systems II: Express Briefs,
    Volume 70, Issue 4, pp. 1560-1564, 2023. DOI: 10.1109/TCSII.2022.3224033

  8. A Dynamically Reconfigurable Recursive Switched- Capacitor DC–DC Converter With Adaptive Load Ability Enhancement
    Q. Lu, S. Li, B. Zhao, J. Jiang, Z. Chen; S. Du;
    IEEE Transactions on Power Electronics,
    Volume 38, Issue 4, pp. 5032-5040, 2023. DOI: 10.1109/TPEL.2023.3235305

  9. A Single-Stage Regulating Voltage-Doubling Rectifier for Wireless Power Transfer
    Tianqi Lu; Sijun Du;
    IEEE Solid-State Circuits Letters,
    Volume 6, pp. 29-32, 2023. DOI: 10.1109/LSSC.2023.3239691

  10. A Bias-Flip Rectifier With Duty-Cycle-Based MPPT for Piezoelectric Energy Harvesting
    Yue, Xinling; Javvaji, Sundeep; Tang, Zhong; Makinwa, Kofi A. A.; Du, Sijun;
    IEEE Journal of Solid-State Circuits,
    pp. 1-11, 2023. DOI: 10.1109/JSSC.2023.3313733

  11. A Bias-Flip Rectifier With Duty-Cycle-Based MPPT for Piezoelectric Energy Harvesting
    Yue, X.; Javvaji, S.; Tang, Z.; Makinwa, K. A. A.; Du, S.;
    IEEE Journal of Solid-State Circuits,
    pp. 1-11, 2023. DOI: 10.1109/JSSC.2023.3313733

  12. A Level Shifter With Almost Full Immunity to Positive dv/dt for Buck Converters
    Yang, Y.; Huang, M.; Du, S.; Martins, R. P.; Lu, Y.;
    IEEE Transactions on Circuits and Systems I: Regular Papers,
    Volume 70, Issue 11, pp. 4595-4604, 2023. DOI: 10.1109/TCSI.2023.3307869

  13. A Self-Bias-Flip With Charge Recycle Interface Circuit With No External Energy Reservoir for Piezoelectric Energy Harvesting Array
    Li, Z.; Chen, Z.; Wang, J.; Wang, J.; Jiang, J.; Du, S.; Cheng, X.; Zeng, X.; Han, J.;
    IEEE Transactions on Power Electronics,
    Volume 38, Issue 9, pp. 11630-11641, 2023. DOI: 10.1109/TPEL.2023.3286399

  14. The Advances in Conversion Techniques in Triboelectric Energy Harvesting: A Review
    Peng, W.; Du, S.;
    IEEE Transactions on Circuits and Systems I: Regular Papers,
    Volume 70, Issue 7, pp. 3049-3062, 2023. DOI: 10.1109/TCSI.2023.3261780

  15. A Synchronized Switch Harvesting Rectifier With Reusable Storage Capacitors for Piezoelectric Energy Harvesting
    Yue, X.; Du, S.;
    IEEE Journal of Solid-State Circuits,
    Volume 58, Issue 9, pp. 2597-2606, 2023. DOI: 10.1109/JSSC.2023.3260145

  16. A Single-Stage Three-Mode Reconfigurable Regulating Rectifier for Wireless Power Transfer
    Liu, S.; Lu, T.; Tang, Z.; Chen, Z.; Jiang, J.; Zhao, B.; Du, S.;
    IEEE Transactions on Power Electronics,
    Volume 38, Issue 7, pp. 9195-9205, 2023. DOI: 10.1109/TPEL.2023.3262728

  17. 30.3 A Bias-Flip Rectifier with a Duty-Cycle-Based MPPT Algorithm for Piezoelectric Energy Harvesting with 98% Peak MPPT Efficiency and 738% Energy-Extraction Enhancement
    Yue, X.; Javvaji, S.; Tang, Z.; Makinwa, K. A. A.; Du, S.;
    In 2023 IEEE International Solid- State Circuits Conference (ISSCC),
    pp. 442-444, 2023. DOI: 10.1109/ISSCC42615.2023.10067284

  18. A 13.56MHz Fully Integrated 91.8% Efficiency Single-Stage Dual-Output Regulating Voltage Doubler for Biomedical Wireless Power Transfer
    Lu, Tianqi; Chang, Zu-Yao; Jiang, Junmin; Makinwa, Kofi; Du, Sijun;
    In 2023 IEEE Custom Integrated Circuits Conference (CICC),
    pp. 1-2, 2023. DOI: 10.1109/CICC57935.2023.10121186

  19. A Bias-Flip Rectifier with a Duty-Cycle-Based MPPT Algorithm for Piezoelectric Energy Harvesting with 98% Peak MPPT Efficiency and 738% Energy-Extraction Enhancement
    Yue, X.; Javvaji, S.; Tang, Z.; Makinwa, K. A. A.; Du, S.;
    In 2023 IEEE International Solid- State Circuits Conference (ISSCC),
    pp. 442-444, 2023. DOI: 10.1109/ISSCC42615.2023.10067284

  20. A Self Bias-flip Piezoelectric Energy Harvester Array without External Energy Reservoirs achieving 488% Improvement with 4-Ratio Switched-PEH DC-DC Converter
    Li, Z.; Chen, Z.; Law, M. K.; Du, S.; Cheng, X.; Zeng, X.; Han, J.;
    In 2023 IEEE Custom Integrated Circuits Conference (CICC),
    pp. 1-2, 2023. DOI: 10.1109/CICC57935.2023.10121219

  21. A 13.56MHz Fully Integrated 91.8% Efficiency Single-Stage Dual-Output Regulating Voltage Doubler for Biomedical Wireless Power Transfer
    Lu, T.; Chang, Z. Y.; Jiang, J.; Makinwa, K.; Du, S.;
    In 2023 IEEE Custom Integrated Circuits Conference (CICC),
    pp. 1-2, 2023. DOI: 10.1109/CICC57935.2023.10121186

  22. A 90.6% Efficient, 0.333 W/mm2 Power Density Direct 48V-to-1V Dual Inductor Hybrid Converter with Delay-line Based V2D Controller
    Hua, Y.; Lu, Q.; Li, S.; Zhao, B.; Du, S.;
    IEEE Transactions on Circuits and Systems II: Express Briefs,
    pp. 1-5, 2022. DOI: 10.1109/TCSII.2022.3219243

  23. A Crystal-Less Clock Generation Technique for Battery-Free Wireless Systems
    Chang, Z.; Zhang, Y.; Yang, C.; Luo, Y.; Du, S.; Chen, Y.; Zhao, B.;
    IEEE Transactions on Circuits and Systems I: Regular Papers,
    pp. 1-12, 2022. DOI: 10.1109/TCSI.2022.3201196

  24. An Output Bandwidth Optimized 200-Gb/s PAM-4 100-Gb/s NRZ Transmitter With 5-Tap FFE in 28-nm CMOS
    Wang, Z.; Choi, M.; Lee, K.; Park, K.; Liu, Z.; Biswas, A.; Han, J.; Du, S.; Alon, E.;
    IEEE Journal of Solid-State Circuits,
    Volume 57, Issue 1, pp. 21-31, 2022. DOI: 10.1109/JSSC.2021.3109562

  25. A Nanopower 95.6% Efficiency Voltage Regulator with Adaptive Supply-Switching for Energy Harvesting Applications
    Zou, Y.; Yue, X.; Du, S.;
    In 2022 IEEE International Symposium on Circuits and Systems (ISCAS),
    pp. 3557-3561, 2022. DOI: 10.1109/ISCAS48785.2022.9937775

  26. A Reconfigurable Cold-Startup SSHI Rectifier with 4X Lower Input Amplitude Requirement for Piezoelectric Energy Harvesting
    Yue, X.; Zou, Y.; Chen, Z.; Liang, J.; Du, S.;
    In 2022 IEEE International Symposium on Circuits and Systems (ISCAS),
    pp. 649-653, 2022. DOI: 10.1109/ISCAS48785.2022.9937838

  27. A Highly Efficient Fully Integrated Active Rectifier for Ultrasonic Wireless Power Transfer
    Yue, X.; Chen, Z.; Zou, Y.; Du, S.;
    In 2022 IEEE International Symposium on Circuits and Systems (ISCAS),
    pp. 531-535, 2022. DOI: 10.1109/ISCAS48785.2022.9937532

  28. Performance Enhancement with a Capacitor-Scaling Design for SSHC Piezoelectric Energy Harvesting Interfaces
    Zou, Y.; Du, S.;
    In 2022 IEEE International Symposium on Circuits and Systems (ISCAS),
    pp. 2758-2762, 2022. DOI: 10.1109/ISCAS48785.2022.9937764

  29. A Nano-power Wake-up Circuit for Energy-driven IoT Applications
    Teng, L.; Liang, J.; Du, S.;
    In 2022 IEEE International Symposium on Circuits and Systems (ISCAS),
    pp. 2383-2387, 2022. DOI: 10.1109/ISCAS48785.2022.9937295

  30. A 10-mV-Startup-Voltage Thermoelectric Energy Harvesting System With a Piezoelectric Starter
    Wang, R.; Liang, Y.; Du, S.;
    In 2022 IEEE International Symposium on Circuits and Systems (ISCAS),
    pp. 1482-1486, 2022. DOI: 10.1109/ISCAS48785.2022.9937554

  31. A PV-assisted 10-mV Startup Boost Converter for Thermoelectric Energy Harvesting
    Liang, Y.; Wang, R.; Chen, Z.; Du, S.;
    In 2022 IEEE International Symposium on Circuits and Systems (ISCAS),
    pp. 644-648, 2022. DOI: 10.1109/ISCAS48785.2022.9937311

  32. A Ring-Oscillator Sub-Sampling PLL With Hybrid Loop Using Generator-Based Design Flow
    Wang, Z.; Choi, M.; Wright, J.; Lee, K.; Liu, Z.; Yin, B.; Han, J.; Du, S.; Alon, E.;
    In 2022 IEEE International Symposium on Circuits and Systems (ISCAS),
    pp. 2881-2885, 2022. DOI: 10.1109/ISCAS48785.2022.9937615

  33. A 200Gb/s PAM-4 Transmitter with Hybrid Sub-Sampling PLL in 28nm CMOS Technology
    Wang, Z.; Choi, M.; Kwon, P.; Lee, K.; Yin, B.; Liu, Z.; Park, K.; Biswas, A.; Han, J.; Du, S.; Alon, E.;
    In 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits),
    pp. 34-35, 2022. DOI: 10.1109/VLSITechnologyandCir46769.2022.9830237

  34. A 6.78 MHz Dual-output Reconfigurable Rectifier with Hysteretic Output Regulation for Wireless Power Transfer Systems
    Lu, T.; Du, S.;
    In 2022 29th IEEE International Conference on Electronics, Circuits and Systems (ICECS),
    pp. 1-4, 2022. DOI: 10.1109/ICECS202256217.2022.9971112

  35. A 2-Mode Reconfigurable SSHI Rectifier with 3.2X Lower Cold-Start Requirement for Piezoelectric Energy Harvesting*
    Yue, X.; Du, S.;
    In 2022 29th IEEE International Conference on Electronics, Circuits and Systems (ICECS),
    pp. 1-4, 2022. DOI: 10.1109/ICECS202256217.2022.9970776

  36. An Automated and Process-Portable Generator for Phase-Locked Loop
    Wang, Z.; Choi, M.; Chang, E.; Wright, J.; Bae, W.; Du, S.; Liu, Z.; Narevsky, N.; Schmidt, C.; Biwas, A.; Nikolic, B.; Alon, E.;
    In 2021 58th ACM/IEEE Design Automation Conference (DAC),
    pp. 511-516, 2021. DOI: 10.1109/DAC18074.2021.9586318

  37. Voltage Flip Efficiency Optimization of SSHC Rectifiers for Piezoelectric Energy Harvesting
    Yue, X.; Du, S.;
    In 2021 IEEE International Symposium on Circuits and Systems (ISCAS),
    pp. 1-5, 2021. DOI: 10.1109/ISCAS51556.2021.9401330

  38. An Automated and Process-Portable Generator for Phase-Locked Loop
    Wang, Z.; Choi, M.; Chang, E.; Wright, J.; Bae, W.; Du, S.; Liu, Z.; Narevsky, N.; Schmidt, C.; Biwas, A.; Nikolic, B.; Alon, E.;
    In 2021 58th ACM/IEEE Design Automation Conference (DAC),
    pp. 511-516, 2021. DOI: 10.1109/DAC18074.2021.9586318

BibTeX support

Last updated: 19 Aug 2024